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ABSTRACT

The historical development of the foundations of thermomechanies is
reviewed, with emphasis placec upon the critical contribution of each in~
vestigator., The theories are discussed in terms of their relevance to
real materials in the important high-velocigy regime which- lies between
the low and intermediate velocity regime (which involves essentially iso-
thermal elastic and plastic wave propagation) on one hand and the ultrahigh-
velocity regime (in which a hydrodynamic description of the material be-
havior is adequate) on the other. Various facets of high-velocity wave
propagation in various materials involve elastic, plastic, viscous, and
thermal effects on a macroscopic scale and perhaps on a microscopic scale.
Evaluations are made from the standpoint of thermodynamics as well as

classical mechanics.

Using fundamental principles of thermodynamics and mechanics,; thermo-
mechanically couplaed linear energy and constitutive equations are derived

for the elastic sclid with microunit cells discussed by Mindlin.

Equations of motion for the microstructure are found for the large
amplitude case where Eulerian and Lagrangian formulations are not

identicai.

iii

acac i SIS




bt T o e ol f X ST

O A 30 S

i S o £~ i LR LA

st ek o

NPTy

N o e G- CF et R e - M T S M T i)
PO e i A g g e e s o e . )
m..,,, # s peress s R PR er O
27 Y ; L« ks a3
g < K : v a s 3 ¥
o : A 5 Yy it 4 o !
N Y SR L % iy W g

TR
<,
g

bl

e Co e

-

- re—

CoRe

a2

e

-

.

CONTENTS

SECTION PAGE
ACKMOWLEDGMENT i
ABSTRACT iii

I REVIEW OF PREVIQUS WORK 1
A. Introduction 1
B. Thermoelasticity 2
c. Thermoplasticity 4
D. Thermoviscoelasticity 6
E. Wave Propagation 7

II COUPLED THERMOELASTICITY THEORY FOR A LINEAR SOLID WITH
MICROSTRUCTUKE 12
A. Introduction 12
B, Conservation of Energy 14
c. Derivation of Constitutive Equations 20
D. Relation to Other Theorie§ 24
111 DILATION WAVES INCLUDING THE EFFECTS OF MICROSTRUCTURE 25
A. Introduction 25

B. Definition of an Ideal Elastic Solid with

Microstructure for Shock Wave Studies 25
c. Tlanar Wave in Micromedia 28

APPENDIX THERMODYNAMICALLY VALID THERMOELASTIC CONSTITUTIVE
RELATIONS CONSIDERING TEMPERATURE DEPENDENCY OF THE
ELASTIC COEFFICIENTS AND STRESS DEPENDENCY OF THE
THERMAL-EXPANSION COEFFICLENT 35
REFERENCES 43

DISTRIBUTION LIST

54




I. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

In the past decade, a very large body of experimental data on the
behavior of various solids under strong shock loading has been obtained
by means of a variety of high-pressure dynamic loading techniques.l’z’3
Since most of the original experimenéal work was conducted at very high
pressures (say, three or more orders of magnitude above the ultimate
strength) at which it has been recognized that strength effects are not
important, the analyses developed to describe this work mathematically
were based on hydrodynamics of dense, inviscid fluids. More recent effort
has been devoted to hypervelocity impact (HVI), i.e., the impact of a small
body with a massive body at relative velocities exceeding the acoustic
velocities cf both. Since HVI involves creation of craters of finite size,
it must depend upon the strength properties of the materials involved.

Most of the attempts to analyze HVI have involved either minor modification
of hydrodynamic theory or correlation of highly simplified phenomenological

models with experimental results.

An example of the inadequacy of the hydrodynamic approach for the
high-velocity regime has been reported by Curran.4 The results of his
plate-slap experiments on 2024 aluminum-alloy plates at an impact velocity
of 1.9 nm/us indicated that attenuation begins approximately £0-percent
sooner and is approximately twice as severe as predicted by hydrodynamic
theory. An analysis able to predict this greater attenuation accurately
is highly desired.

Until very recently, thermodynamic aspects of high-velocity wave
propagation have been highly ne-lected. Although the theory of linear
elastic materials with tharmomechanical coupling (through the energy
equation) dates back to 1837 with Duhammel's work,5 there have been few
new major accomplishments in thermomechanics until about ten years ago.
Since the topic of linear thermoelasticity without thermomechanical
coupling has been treated extensively in Boley and Weiner's text:book,6

it is omitted here.
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B. THERMOELASTICITY

Although the energy equation and constitutive equations for a
classical linear elastic solid with thermomechanical coupling were
originated by Duhammel in 1837, surprisingly little work has been done
in this area. Here the term "classical" means one without microstructural
ef’ects and with elastic properties independent of temperature. Most of
the analyses reported in the literature are concerned with the response
(thermal and mechanical) due to sudden or cyclic heating but no mechanical
loading. It appears that more analysis should be devoted to problems
involving purely mechanical loading, with particular emphasis on determin-
ing the loading rate at which the thermomechanical coupling effects
become important. On a strictly intuitive basis, it is believed that in
the regime in which thermomechanical coupling effects become important,
the use of a finite description of strain, rather than the linear

infinitesimal one, is necessary.

One of the most interesting anomalies in the behavior of a classical,
linear elastic solid with thermomechanical coupling has been discussed by
Deresiewicz:7 His analysis predicted that the phase velocity of plane
elastic waves approach the adiabatic value at low frequencies and the iso-
thermal value at high frequencies. Deresiewicz pointed out that this is
in disagreement with the Laplace-Rayleigh thermomechanical theory of
gases, which Deresiewicz claimed is erroneous.

Although various theories of elast:Lcit:y,&-lo taking into considera-
tion doublet stresses (doublet forces/area) in addition to classical
stresses (forces/area), have been proposed to explain such phenomena as
size effects in materials and crystal-lattice-type wave dispersion; only
recently has attention been given to the thermodyramic aspects of such

s«:vlids.ll"15

In all of the theories of thermoelasticity kunown to the authors,
the temperature dependence of the elastic cons "a2nts is neglected, even

though a recent thermomechanical theory of elastoplastic waves in solids




considers an effect of the same order of magnitude: the eff-~ct of tempera-

SR e

ture on the yileld strength.15 Rosenfield and Averbach,lb in an analysis
which is on a rather weak mathematical and thermodynamic basis, indicated
that the temperature dependence of the elastic coefficients is related to

the stress dependence of the thermal-expansion coefficient « as follows:

@=a + 0 (1)

where 5

o = 2 dE/dT 2)

where oy is the cocefficient of thermal (linear) expansion at zero stress,

ay is the change in this coefficient per unit of normal stress, o¢ 1is

' the normal stress applied in the direction in which o i1s measured, E
is Young's modulus, and T 41is temperature. Rosenfield and Averbach con-

. ducted experiments which confirmed the linear dependence of o with

. stress, as predicted by Eq. 1. However, the discrepancy between tne value
of the proportionality constant ay predicted by their theory, Eq. 2, and
that measured varied from 6 to 100 percent. An analysis which is on a
more sound thermodynamic and mathematical basis than that of Ref. 16 is
given in the appendix. Unfortunately the new theory requires additional
experimental data which are not normally available, namely the variation

of «

1 with temperature.

Following a procedure suggested in Boley and Weiner's,6 I‘illon17
formulated a theory of thermoelasticity for physically nonlinear elastic
solids. He considered the strains as independent thermodynamic variables
("fluxes") and the ~tresses as dependent thermodynamic variables ("forces');
thus, he utilized the Helmholtz free energy function (also called the

Gibbs work function). It appears that he might just as well have
considered the stresses as independent variables and the strains as

dependent variables, and then utilized the Gibbs thermodynamic potential.18




Vakulenko19 has considered stress as the independent thermodynamic variable
in his work in tbermoplasticity, and Burridge and Knopoffzo have introduced
a formulation of mechanical energy, using stress as the independent
variable, which is valid for prestressed and inelastic media as well as
nonprestressed elastic media. This approach is wsed in the appendix to
considerably simplify the derivation of the stiress dependency of the

thermal-expansion coefficient.

Another type of nonlinearity, namely geometric nonlinearity (i.e.,
finite deformations), has been discussed very ably by Lee and Liu,21 and
some of the underlying thermodynamics aspects have been put on a sound

mathematical basis by Coleman and Noll22 and Wang and quen.23

C. THERMOPLASTICITY

The quantitative experiemnts of Farren and Taylor24 in 1925 form the
basis for thermoplasticity. They found that approximately 90 percent of
the work done in plastic deformation is dissipated in the form of heat and
the remaining 10 percent is irreversibly stored due to permanent distortion

of the crystal lattice.

Some of the work in thermoplasticity has been largely of a philoso-

phical nat:ure.zs-27 The first attempts to put the subject on a quantitative
basis were made independently by Freudenthal,28 Prager,29 Ziegler,30 and
31,19 32

Vakulenko. Their work has been discussed critically by Naghdi,
who considered their work strictly exploratory in nature. His primary
objection was that their thecries are uncoupled, i.e., they do not con-
tain a heat conductaon term. He also questioned thelr choice of state
variables and generalization of Onsager's principle to nonlinear

phenomena.

Grigorian33 took the viewpoint that, although thermodynamic concepts
are of limited usefulness in constcucting the mechan.cal parts of consti-
tutive equations, one ohould check the thermodynamic consequences of a

tentative constitutive relation in order to make the mathematical model
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thermodynamically complete. (This point is illustrated in the consideration
in the appendix.) It is interesting to note that Grigorian recegnized
that some of the plastic work goes into increasing the internal energy due

to changes in structure of the material.

Foster34 devoted attention to relaxation-spectrum effects., 1In
particular, he noted that there are different relaxation spectra for

loading (increasing load) a2nd unloading (decreasing load).

Assuming that all of the plastic wor'. is dissipated in the form of
heat, Dillon35 formulated a theory of thermoplasticity with thermomechanical
coupling for small strains and Backman36 forrulated an analogous theory
for finite strains. However, the latter work has been criticized and

improved upon by Lee and Liu.21

To date the most complete mathematical models for dynamic thermo-
plasticity analyses are those of Grigorian37 (with emphasis on soils) and

Lee and Wierzbicki15 (with particular reference to metals).

As mentiored previously, Lee and Wierzbickil5 included the effect
of temperature on the yield strength, but neglected the thermodynamically
related effect of stress on the thermal-expansion coefficient, o« . In
their experiments, Rosenfield and Averbach16 measured this effect for
stresses well into the plastic range. They found that as soon as the
elastic limit is exceeded, o increases with stress at a greater slope
*" an in the elastic range. However, the slope decreases with increasing
stress, eventually becoming zero, and finally negative. When they
removed the stress after each successive loading, they found that the
permanent changes in o also increased, then leveled off, and finally
decreased at higher applied-stress levels. This appears to be closely
related to the observations of Farren and Taylor24 that the percentages
o1 the total plastic work which goes into permanent distortion of the

vttice varies with applied strain. In view of these consideratioms, it
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is conjectured that the effect of the stress dependency of the thermal-
expansion coefficient would be greatest for short-duration pulses in
which the loading is removed before there is sufficient time for very
large plastic strains to be reached. However, as in the case of the same
effect in the elastic range, quantitative inclusion of this effect in a
theoxry must await experimental measurements of it over a range of

temperatures ranging upward from room temperature.

D. THERMOVISCOELASTICITY

The theory of thermoviscoelasticity has strong thermodynamic bases,

thanks to extensive research by Biot,38-40 Chu,l*l'_42 Schapery,lB—45 and
46-48

Coleman. Other research on the formulation of constitutive equations
for themmoviscoelasticity has been carried out by Eringen,49 Cowin,50

Chudnovskii,Sl and Leigh.52

Various aspects of the nonlinear theory of viscoelasticity have )

been treated in recent work by Koh and Eringen,53 Kline,54 and Valanis.55

5%
Recently Eringen”" has formulated a theory of microstructural viscoelasticity

4

including thermodynamic considerations.

The literature which has appeared in the past decade on dynamic
thermoviscoelastic (DTVE) problems is too voluminous to mention in detail
here. For a basic treatment of the subject, reference is made to Boley
and Weiner's book.6 Most of the DIVE analyses found in the literature
neglect thermomechanical coupling. An example of one of the few DTVE

analyses in which this coupling is considered is found in Ref. 57.

It appears that the possibility cf the type of thermomechanical
instability discussed by Berg58 should be investigated further, especially
for high-intensity waves. He pointed out that the softening of a body
due to heating allows external loads to deliver more power to the body at

an increasing rate.
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E. WAVE PROPAGATION

There are two fundamentally different types of waves:

1. Simple, continuous waves, which can be mathematically described
by a Fourier series of harmonic waves. These waves are of

small amplitude and are often called acoustic waves.

2. Discontinuous waves which involve a discontinuous jump in
some physical quantity. The order, n , of a discontinuous ‘
wave is the order of the time derivative of the displacement
which 1is discontinuous. Thus, a shock wave, which involves
a jump in velocity, is a first-order wave and is usually the
most severe.* Higher order waves involve jumps in accelera-

tion (acceleration waves) and in higher time derivatives.

The classical treatment, as used by Rayleigh,59 is adequate for
handling acoustic waves. The literature on the propagation of such waves

in elastic and viscoelastic solids is too voluminous to mention here

i 6

except tc refer to twe texts60’ 1
£2-6

topic. 2-64

and three review papers devoted to this

The common metallic alloys used in load-carrying applications,
namely steel, aluminum and most titanium alloys, behave macroscopically
as isotropic materials at least in the elastic range. However, since
they are really aggregates of many highly anisotropic crystals, they behave
anisotropically on a microscale. This has been the motivation for various
theoret:i.cal65-'68 and experimental studies69 of acoustic-wave propagation
in single crystals. A few metals and alloys of increasing engineering
importance, namely beryllium, certain titanium alloys, zirconium, and

uranium, arc anisotropi: even on a macroscale. Furthermore, filamentary

composites behave anisotropically on a macroscale.

xAn alternative, but equivalent, definition of the order n of a discon-

tinuity is one plus the order of the space derivative of the strain which
is Iiscontinuous. Thus, a shock wave, which involves a jump in strain, ’
i. 1 first-order wave.

B T U




The development of theories of solids with microstructure10’13’14

now permits a mathemacical treatment of solids which are isotropic on a
macroscale and yet anisotropic on a microscale. This opens a new avenue
of improved correlation between theorv and experimental studies of
acoustic wave propagation. However, to date, studies along this line

kave been limited to theoretical studies of relatively simple systems.m’m-72

The method of characteristics, which is based on the concept of a
characteristic surface or discontinuity surface appears to have been
developed at the turn of the century by Hadamard73 for the study of the
propagation of discontinuities in hydrodynamics. The method has found
wide us¢ in fluid mechanics, including gas dynamics and magnetofluidmech-

anics as well as hydrodynamics.

Apparently the first application of the method of characteristics ’
to solids behaving nonhydrodynamically is due to Thomas. He was originally N
concerned with plastic solids74 but later generalized his compatibility .
condit::i.ons.nn76 Hill77 discussed stability and uniqueness of acceleration ’

waves in general media with emphasis on incompressible and elastoplastic
media. Acceleration waves in anisotropic elastic solids were analyzed by
Howard,78 who was concerned with transversely isotropic media and Nariboli79
who treated general anisotropic elastic media. Nariboli's approach is
interesting in that he combined the singular surface concept of Thomas
with the ray theory of Courant and Hilbert to obtain an equation which up-~
on integration predicts the growth or decay of the discontinuities. Very
recently Lur'e80 has analyzed the propagation of discontinuities in
continuation with microstructure.

Recently a number of invest:igatorsal"85 have investigated nonlinear
aspects of acceleration waves and higher-order waves in nonlinear elastic
materials. Some of the general results of these studies are:

1. When the strain has a discontinuity, the derivative of the

strain also must have a discantinuity.82 Thus, shock waves
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(to be discussed later) are accompanied by acceleration waves

although the converse situation does not necessarily hold.

2, Varley and Dunwoody83 found that the linear theory of irrational

waves has an error which increases with time. Their nonlinear
theory predicts that either a shock forms or the material
"forgets" the details of the disturbance in a finite time.
Green's theory84 predicts that acceleration waves either
become infinite in finite time (i.e., a shock forms) or decay
to zero in infinite time, with the exception of transverse

waves normal to a shock.

3. Discontinuities of higher order than the second propagate
with constant strength84 and at the same velocity as the

acceleration wave.

In their book,86 Truesdell and Noll presented a review of accelera-
tion waves in generalized elastic media. Recently considerable attention
has been devoted to acceleration waves in viscoelastic media.87_93 0f
these, the work of Varley is especlally important because the material may

be generally anisotropic and nonhomogeneous.

The problem of the propagation of discontinuities into a prestressed
medium is important in connection with propagation of unloading waves (if
the duration of loading is sufficiently long compared to the transit time
of the reflected wave), since then the medium is essentially prestressed
by the loading wave. For small deformations (i.e., acoustic waves), this
problem was treated by Biot.94 The case of acoustic waves but large
deformation due to the prestress have been considered in Ref. 95-97.
Finally, the propagation of finite discontinuities in prestressed media

has been treated by Green.

Although the foregoing analyses employ thermodynamics in the
formulation of the constitutive relations, they do not consider thermo-

mechanical coupling. This has been treated in two recent papers by
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Chadwick and Powdri1199 for the linear thermoelastic case and by Fineloo

for the thermoelastoplastic case.

In the hydrodynamic formulation of the shock wave problem, the
major physical effect considered in the constitutive equation is
compressibility, i.e., dilatational (volumetric) waves. Thus, shear waves,
in fact any shear effects whatsoever, are not considered at 4ll. As has
been pointed out by Fyfe et al,101 this does not mean that the hydrodynamic
theory cannot predict some physical aspects of a shock wave even at high
velocities (as opposed to hypervelocities). An example of an early attempt

to combine shear effects with dilatational effects is contained in Ref. 102.

It should be pointed out that shock waves are not limited to

compressible media. In fact, recent analyses by Chu103-104 and by

Collins105 have been concerned with the propagation of shock waves in

*
incompressible isotropic elastic media. In such media, only nondilatational e

shock waves can occur.

Recently Bland,106-107 Green,84 and Coleman, Gurtin, and Herrera,88
considered plane shock waves in compressible isotropic elastic media.
Although these investigators considered certain thermodynamic aspects,
they did not consider them to the depth considered by Dewey108 and by
Lee and Wierzbicki.15 The case of plane shock waves in compressible
isotropic thermoelastic media was recently treated by Chadwick and
Powdrill.109 Their analysis is interesting In that they claim that their
analysis leads to an infinite family of shcck wave solutions which range
thermodynamically from isothermal to adiabatic. They claim that they know
of no thermodynamic or mechanical principle which enables selection of
the "correct" solution, although they suggest the possibility of using
the theory of nonlinear hyperbolic partial differential equations or
the irreversibility principle of thermodynamics (second law). The
present writers suggest that a stability investigation might be in order

here, i.e., it is unlikely that all of the possible solutions are stable.

*

For an isotropic linearly elastic solid, incompressibility requires
that Poisson's ratio be equal to 1/2. This value is closely approached
in certain rubber-type materials, but not in metallic materials.

10
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In Ref. 106, Bland found that two kinds of shock waves, dilatational Q
and nondilatational, are possible in a compressible isotropic elastic ’
solid. However, it is interesting to note that he concluded that nondilata-
tional shock waves cannot propagate into a compressible hyperelastic solid
at rest in its reference state. To the present writers, this implies that
nondilatational shock waves can occur only during unloading, since then
the material, being already loaded, is not at its reference state. 1In
Ref. 107, Bland showed that in many solids (including simple elastic mate-
rials), the only kind of shock waves which are stable and admissible
thermodynamically are tensile dilatational shock waves (in contrast to
compressive dilatational shock waves in fluids). Although plane compres-
sive shock waves in elastoplastic media have been studied extensively,

Bland claimed that they are possible only in media in which the stress-

strain curve is concave upward in the plastic range.

To study the shock structure (i.e. the shape of the shock wave

front), it is necessary to include viscous dissipative effects. Recently

Bland110 has performed such an analysis for plane waves in a simple

viscoelastic solid. He showed that all monotonic wave profiles altimately
adopt the same constant wave profile, and he calculated the profile width

and the time formation of the profile.

In this brief review, a number of related special topics should at

least be mentioned:

1. Disintegration or pulverization of material behind a shock
front, applicable to certain soils.lll

12

2, Cha.ges of phase such as melting1 due te shock wave heatirg,

shock-induced metallurgical transformations,113 and sheck

hardening of metals.114

11
3. Interactions between acoustic waves and shock waves, >

reflection and refraction of shock waves at free surfaces and

Interfaces, and spallation fracture criteria.ll6’ll7

4, Experimental techniques for generating shock waves and measur-

ing various characteristics of them.

11




II. COUPLED THERMOELASTICITY THEORY FOR A LINEAR SOLID WITH
MICROSTRUCTURE

A. INTRODUCTION

The use of high-pressure dynamic loading techniques in studying the
behavior of solids under strong shock loading has produced a very large
body of experimental data in recent years.3 Most oif the original
experimental work was associated with very high pressures (three or more
orders of magnitude above the ultimate strength of the material) at which
it has been recognized that strength effects are not important. Thus,
the theory* developed to accompany this work was based on hydrodynamics
of dense fluids. Later interest turned to hypervelocity impact of a suall
body on a massive body. This problem involved creation of craters of
finite size and consequently involved high-pressure waves that must
necessarily depend on the strength properties of the materials involved.
The natural extension of hydrodynamic theory to this problem has been
by the most expedient addition of special effects te existing computer
codes (programs) and in correlation of simple phenomenological models

with experimental results.

There is a well recognized need for an attack on the problem of
propagation of high-pressure waves form a fundamental thermomechanical
point of view.15 This effort is underway in several areas. The effort
reported here is concerned with developing an applicable coupled
thermoelastic thecry that will take into consideration the microstructure

of an elastic solid.

*
The use of "theory" here is in its most general sense, since most of

what has been done in the past is in the nature of computer solutions
to very involved nonlinear flow problems and might properly be called
computer experiments on mathematical simulationms.

12
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The coupled thermomechanical theory (thermal and mechanical effects
coupled in energy and constirutive equations) is well established for the
macroscopic description of solid media. The elastic case is due to
Duhammel5 in 1837, the viscoelastic case to Biot40 in 1955, and the

viscoplastic case to Dillon35 in 1963.

Experimental observation of such mechanical phenomena as size

effects and crystal-lattice type wave dispersion effects has led to various

micromechanical theories. Of these, perhaps the most notable 1s the

couple-stress theory, which in addition to ordinary stresses (forces per

unit area) also considers couples per unit area. This theory was

originated by Voigt8 in 1887 and was considerably developed by the

Cosserat brother59 approximately sixty years ago. In the past ten years,

this theory has been developed further by various investigators too

numerous to mention here.

10 noted that couple stresses are actually only the antisymet-

ric part of a more general tensor which he called the double stvess tensor;

Mindlin

thus, he originated a theory which he called linear elasticity with micro-
structure. He also pointed out that hic theory is mathematically
equivalent to a linearized version of Ericksen and Truesdell's theory of
deformable directors.118 In the latter theory, the mechanical behavior

of a body at a given point is assumed to depend upon not only the deforma-
tion of the point but also ihe deformaticn of an oriented "director"
located at the point. If the director is assumed to be rigid, the

equations reduce to those of the Voigt-Cosserat couple-stress theory.

Upon completion of the present work, the work of Greem, Rivlin, and
Naghdi'ng_l?'1 came to the attention of the anthors. In Refs. 119 and 121
they derived an energy equation for a simple multipolar material, but
they did not deal with constitutive equations. In Ref. 120 they extended
their previous work to include multipolar deformation fields. Their work

differs from ours in that they started with an entirely different set of

13
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hypotheses in their theory. We believe that our derivation on the basis
of a microelement is more satisfactory from a physical viewpoint. Also,

they 2id not include initial stresses nor anisotropic beharior in their

constitutive equation.

In the work reported here, the usual material constitutive equations
are replaced by equations derived for the specific case of shock wave
loading. This is consistent with the current interest in constitutive
equations that have been experimentally determined from plate slap and

other strong shock wave techniques.

B. CONSERVATION OF ENERCGY
Using Mindlin's express:i.on10 for the kinetic energy density, the

kinetic energy T of a macrovolume V can be rewritten as follows,

- l L] L] l ' 2 L] *

T = 5 fpujuj av + 6 fp dlj%k‘pjk dv (3a)
\' \Y

where p = py + p! (3b)

2
= + A
dey = 9 4 épl‘sqf‘zﬁjl * 8528q2%a 52 * 6p38q3tes j3> (3e)
vhere uj = displacement components
di = gemilengths of edges of microelement
wij = microdeformation
py = mass of macromaterial per unit macrovolume
p' = mass of micromaterial per unit macrovolume
Gij = Kronecker delta
zij = direction cosines of edges of microelement with respect

to fixed spatial coordinates Xi

14
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and a dot denotes differentiacion with respect to time. The first term
on the right-hand side of Eq. {3a) is the classical kinetic energy
expression and the second term represents the contribution of the micro-

element.

Mindlin'slo expression for the rate of work W done on the macro-
volume V by the external forces (surface and body types) is equivalent

to the form:

W= ftjuj dA + ffjuj dv+f'rjktpjk dA + fij“’jk v (4)
A A

\Y A
where Ly = surface force per unit area
fi = body force per unit macrovolume
Tjk = gurface force doublet per unit area with moment arm
normal to axis Xj and acting in the Xk direction
ij = body force doublet per unit volume with same subscript

notation as for Tjk

A = area

The terms on the right-hand side represent the work done by the respective

macro and micro surface and body forces.

*
The internal energy U contained in both macroelements and micro-

elements can be expressed as

% {
= U 'yt dv = ¢ -
U JDMUM dv + er otal energy - kinetic energy

v v
(5)

where U, , U' are the internal energies per unit mass for the

macroelement and microelement, respectively.

15
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Considering a closed system consisting of both macroelements and
microelements, thermal energy is transferred out of the system at the

rate

Q=fqu (6)

where q is the outward heat flux. Conservation of mechani al energy
requires

d *
W-Q=g- (T+1U) @)

The traction conditions at the boundary of the macroelement are:

t, = ni(oij + Oij) (8a)
Tjk ni(u].ij + uiJk) (8b)
where n, = direction cosines of the outer normal to the surface
aij’gij = components of the respective symmetric and antisym-
metric parts of the ordinary stress vector (force/
area)
uijk’"ijk = components of the respective symmetric and antisym-

metric parts of the doublet stress vector (foxce

doublet/area) acting normal to direction Xi

Application of the divergence theorem and Egs. (8) yields the
following result from Eq. (4):

W= f[(&ij+5ij)6:£| 1 dv+f[(aijk+"ijk)‘”jz],i av
v

V'

v fe fe, b
€.u, dv+ |F dv (9)
y 33 vjkjk
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where [ = 3{ ]/8Xi

1

The heat transfer can be rewritten in terms of a heat flux vector

Q = qunj dA = qu,j dav (10)

A \Y

as follows:

The differentiation on the right-hand side of Bq. (5) can be brought
under the integrel signs appearing in Eqs. (1) and (3) with the following

results:

o+ = foin avex fovd®y 4. av
dt PuYy 3 JP %%k
v v

+ f(prJM +p'0") av (12)
v

This interchange of the order of differentiation and integration can be
justified by assuming small displacements.6 However, it can also be
justified for arbitrary displacements by considering conservation of
mass.122 Consistent with the assumptlons of linear elastcdynamics the

deusities are treated as constants.

The quantity ﬁj 1
14
antisymmetric parts as follows:

may be written in terms of its symmetric and

L] l . . l L] . _ . _ .

b T2 Gyt T Gy ) T ey ey (2
where elj and wij are the macrostrain and macrorotation, respectively,
given by the following relations:

e mEu, U, Dy sy -u, ) (12b)

t 5 B % R PR AR % B 3,1
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The relative deformation Yij is defined as the difference between

the macrodisplacement gradient and the microdeformation, i.e.
- q,i (13a)
From Eqs. (10a) and (l1), the following relationship is obtained:

u =Eg,. T W

3,1 7 %13 T %13 T Vi

; + Yia (13b)

]
Then the first term in the expression for W, Eq. (7), can be

rewritten as follows:

f[(oij, %i3, i)uj + °1j 13 T30yt Yij)] v 4)
v

where the integrand term -Sij&ij has been omitted because it is a product

(of a symmetric tensor and an antisymmetric tensor) which must be zero.

Incorporating relations (9-11, 12) into (7) and rearranging terms

and subscripts yields:

5 +g.. . + £ -pudu, dv
f(oij,i 93,0 F £5 7 PYYy
v

~

- ~ . - l ' 2 A .
I:“ijk,i Tk, PO TR 30 dzjq’kl]wjk v

+
<gﬁ

- . ~ . . - ~ . _ _ 0 _ 'o' -
- J [°ij€ij POt Bage T Vs T Sy, T ot TP ”] w=o
v
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The first two integrals appearing in Eq. (15) vanish by virtue of
the following transiational and rotational equations of motion:

Oij,i + Oij,i + fj = puj (16)

~

) ) 1,2 .
Figie,t T Mg, POk T P T30 Yt Qa7

=

Thus, the only integral remaining in Eq. (15) is the last one, which

then must be equal to the right-hand side, namely zero. Furthermore, for

this integral to be zero for arbitrarily small regions, its integrand
must be zero. Thus,

~
.

g FERTIS TR o I (e
where
¢
- 111¢
pU = MUM + p'U

The microstrain gradient Kijk is defined as follows:

Kijk = wjk,i (19)

Then Eq. (18) can be rewritten in the following form:

-
.

O14%15 Y %aYar t Mogige Y Mk

R oo

g " 9,57 0 20

Equation (18) is the get.eral energy equation for an elastic
medium with microstructure.

pnieroi Ly alne

When microstructural effects are absent
3 (;ijk = “ijk = Yy z 0) , Eq. (17) requires Ehat the antisymmet:ic part
y of the ordinary stress tensor also vanish (ojk £ 0) and Eq. (20) reduces

to the well-known energy equation of a classical elastic solid.5
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It is of interest to note that when all of the stress (o and p) ,
strain (e,y) and straiin gradient (x) components have the same sign,
the presence of the antisymmetric ordinary stresses and both the symmetric

and antisymmetric parts of the doublet stresses represent energy sinks
in the system.

It is especially important to note that even though Eq. (20) is

coupled in the sense that it involves terms containing Oij’ uijk’ 1

%13%13% °F Pigk1j -
This considerably reduces the number of ccefficients which are required

and U , there are no cross-energy terms such as
in the constitutive equatioms.

C. DERIVATION OF CONSTITUTIVE EQUATIONS
Using Caratheodory's statement of the second law of thermodynamics,
Boley and Weiner6 derived the following relations for a locally reversible

*
thermodynamic process:

Asas + pTn =1U (21a)
BB, - = pTn 21b
the T 94,3 TP (21b)
where ey Bt = nondissipative and dissipative deformation variables
A , B = state functions
S t
p = density

T = absolute temperature

n = entropy density function

Here we neglect viscous effects because it is believed that shock wave
deformation occurs so rapidly thai there is insufficient time for viscous

forces to develop; thus, Btét =0 ., Then Eq. (21b) yields:

a5 = -pTn (22)

*
According to Coleman and Mizellz3 the assumption of microscopic

reversibility is unnecessary.
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1 R Taking eij’ ij’ Kijk as state variables, we must consider aij’
: ajk’ uijk as state functions:

O35 = 943 Cq50 Y0 Fyqi0
' ojk 1= ojk(sij’ ij, Kijk’ T) (23)
S

Migk T MagcCEige Yoo Figee D

-
.

54%13 ¥ T13V15 T Pigege

+ pTﬁ = pU

A free-energy function ¢ 1is defined by the following equation:

ok e

A ¢(€ij’ ij’ Kijk’ T) = U(eij’ ij’ Kijk, T) - Tﬂ(eij: ij) T)
f (24)
i
- Then
r
é b= 0-Th- 1 (25)
But since

¢ = ¢(€ij, ij’ Kijk’ T)

. _ a_?l . 22 . EQ . gi .

b = c,. + Y. + K + T (26)

8€ij ij ayjk jk aKijk ijk = oT

Equating from Eqs. (25) and (26):

TR S TR VI TR R T
U-Tn - TIn = g,, + Y. F K + T 27)
ey 713 T By Yok T By, Mgk T oT

Thus, since it has been assumed that the other quantities are

independent of T , comparison of Eqs. (26) and (27) shows that

n == (28)
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and

. 36 . 36 o 3 .
U=nT+3% ¢ 420 5 L3¢ ¢ (29)
de,, ij 8ij jk 3Kijk ijk

Putting Eq. (29) into Eq. (23) gives

~

. . - -ai . -a_?- . _3_9. .
13 7 O3k T MKtk °<;sij €5 T ayjk¢jk * B, gp 19K (30)

OijC

Since it has been assumed that ¢ 1is independent of éij’ §ij s
and éijk » the following additional. equations must be satisfied:

= o, 99 1 =y O
°ij P 3613" ojk P ank, My 5k 0 aKijk (31a) (31b) (31c)

Equation (3la) has often been used as the thermodynamic basis for
the symmetry of the elastic coefficients in the generalized Hooke's law
for a general anisotropic elastic solid. In analogous fashion, Eq. (31b)
can now be used to 2stablish the symmetry of the microstructural elastic
coefficients in general (anisotropic). It is of fundamental importance
to note that Eqs. (31) show that thermodynamically there can be no

coupling of macrostrains and microstrains in_ the constitutive equatioms.

Needless to say, this simplifies the constitutive equations considerably.

To establish the form of the macro and micro constitutive equations
more specifically, the free-energy function can be assumed to be a poly-

nomial in the macrostrain components , the relative strain components

€
ij
Yij , the macrostrain-gradient components Kijk , and the temperature T .
For a linear material, defined as one having linear constitutive relations,

the highest degree polynomisl required is of second degree. Thus,

pé = a+ b, . e T

1315 T 913kef15%ke T 815614

* * *
+bjijk + djijkY ot gjijkT

N (32)

Biie%13e T Pagkemn®iik¥omn * C1gkcegkt

22




In view of Eqs. (31) and (32), the following constitutive equations

can be written:

s = . . s n
Gij bij 3 dijijsij + dijklekl + gijT’ kL # 1ij (33)
Ct e o g Lo

Oy = O * Ut Samem * 875 I P Ik (34)
Mo = Bkt gk giagk t DojkemnSamn T Cygi s Amn # 33K

(35)

There is a total of forty independent parameters involved in a
general three-dimensional thermoelastic problem involving microstructure.

These are temperature plus thirty-nine mechanical deformation parameters:

Six sij (since eji = Eij)
Six Y ik (since Yy = -ij)

Twenty-seven Kijk
(Mindlin8 stated that there are forty~two mechanical deformation parameters,

but he had not determined that ij = -ij.)

The arrays of coefficients have the following sizes:

(a) Total No. of No. of Independent
Coefficient Array Type Non-Zero Coefficients Coefficients

b ™ 6 6

d AM 36 21

g T 3(b) 3(b)

b* M 6 3

a* AM 36 , 15

g T 6 3

B IM 27 27

D AM 729 729

G T 27 21
Total IM 39 36
Total AM 801 765
Total T 36 33
Grand Total 876 834

(a) IM = initial mechanical, AM = active mechanical, T = thermal expansion
(b) This relies on the well-established fact that there are no thermal
shear strains in linear theory.
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The total number of independent active mechanical coefficients
listed in the above tabulation (765) is considerably smaller than the
1764 claimed by Mindlin,'* although it is still a formidable number.
The advantage of including anisotropic behavior both on a macroscopic
and on a microscopic scale is that it permits handliung of any material.
However, many metals and alloys of engineering importance (steel, aluminum,
some titanium) are macroscopically isotropic and microscopically

anisotropic depending upon the crystalline structure.

124,125

Recently Gurtin proved a theorem stating that the Clausius-

Duhem inequality requires that every elastic material be "simple," i.e.,
have stress, free energy, and entropy at a material point dependent at
most on deformation gradient and temperature at that point. However,
Gurtin did not include the possibility of any doublet stress effects in
his work. Thus, the present work is not inconsistent with his theorem;

rather it is beyond the scope of his theorem.

D. RELATION TO OTHER THEORIES
It may be possible tc relate the present theory to the solid-state
theory of the Griineisen paralmet:er.l%-128 For example, Gilgarry128 has

argued that the Dugdale~-MacDorald corrections127 for finite strain are

not valid; yet many experiments indicate better agreement with the

Dugdale-MacDonald predictions.

it has been shown that there is a direct correspondence between
doublet stresses and a continuous distribution of dislocations.lzg’130
This may provide a basis for relating the present work to various theories

13
of dislocational damping.l3l’ 2

The present theory has no provisions for phase and state transforma-
tions, which sometimes take place in certain crystalline materials under

strong shock conditions.3
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I1}. DILATION WAVES INCLUDING THE EFFECTS OF MICROSTRUCTURE

A. INTRODUCTION

The accumulation of a number of years of experimental work with

shock waves in solids is reported in Ref. 133. That work has led to

the conclusion that any proper explanation of shock wave phenomena in

solids must include the effects of a rotation and deformation of microscopic
regions even when the input loading is a longitudinal pulse. These
conclusions provide sufficient reason for the investigation of a theory

of "microstructural" deformation in shock wave processes. A necessary
requirement for such an investigation is the development of appropriate

constitutive equations as done above.

These constitutive equations are used here with the equations of
motion for piane waves.

B. DEFINITION OF AN IDEAL ELASTIC SOLID WITH MICROSTRUCTURE FOR SHOCK

WAVE STUDIES

The definition of an '"ideal" continuum involves the assumption that
a state variable (vector) exists and that a reversible path exists between
any two possible conditions of the state vector. The state vector for an
ideal elastic solid with microstructure must include the temperature, T ,
and information about either the state of stress or strain in both
conventional macrostructure and the additional microstructure. Constitutive
equations have been developed which involve the state variabl=s
Y3

media, and the microstrain gradient), and the state functions:

sij’
K and Kijk (macrostrain, relative deformation between mai«ro and micro

-

symmetric macrostress (36)

oij(eij, ij’ Kijk$ T)

oik(eij’ ij, Kijk, T) = unsymmetric macrostress (37)
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and

uijk(eij’ ij’ Kijk, T) = doublet stress. (38)

This development is valid whenever the kinematics of the physical problem

make Eulerian and Lagrangian coordinates interchangeable. In particular,
the assumption is made that

e
a, : X, (39)
i i

where uj = xj - aj is the displacement of the particle, x, is the

Eulerian coordinate and aj is the Lagrangian coordinate. And &« similar

assumption applies to derivatives in the microstructure. In the problems

where the absolute value of displacement gradients is small, i.e., where
du,

lg;i|<<1

(40)
this is a valid approximation. However, we wish to deal with shock waves
in the macrcstructure where this approximation could be considered invalid.
The validity of the assumption in reference to the microstructure also
needs to be considered. The size of the microstructure elements has been
related to the spacing ¢ f dislocations in Ref. 133. 1In Ref. 134, a

typical value for the density of dislocations in a crystalline structure

is suggested as 109/cm2 before shock wave loading and lOll/cm2 after

lcading.

This would lead to typical sell sizes of 3.10—5 cm/sell edge before
and 3.10-6 cm/sell edge after shock wave loading. The same reference also
suggests that the shock front thickness would typically be of the order
of a phonon mean free path or from 10_5 cm to 10_7 cm, which is comparable
to the sell size. This leaves the speculation that the gradient is not
small in the microstructure with some support. Consequently it will be

necessary to reexamine the formulation of the microstructural

representation.
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The Eulerian equations of motion for an elastic solid with

10
microstructure are

9

3;; (0,, +0,,) + pf pu

13 i3 (41a)

j =
(n +u )+0 + pF "‘]:'D' 2'1’ (41b)
axjL 1y T Hiq? Yot eF =30 dgty

These equations are converted to Lagrangian form by substitution of the

Lagrangian variables.

9 (=) ”(L) Ly . =

9ay (oij> °15 F %F5 T oY (42a)
3 (L) “(L) “(L) rl) 21 v q()y2y
ai<ijk>+uijk S TP oFq T TP (g ) Yy (420)

The Eulerian symmetric stress tensor cij gives rise to a non-
(L)
iy °

symmetric stress tensor, the Langrangian tensor may be transformed to

symmetric Lagrangian stress tensor o In crder to recapture a

the Kirchhoff stress tensor, and Eq. (7a) becomes

[~

ax -
) -(K) |, ~(K) i w _ =
da, [<°ik + °1k) Bak]+ Pofy " = PolY;

i
fgL) fj and define

In crder to simplify the notation, we let
(K)

o] = §

so that the macro material equation of motion in Lagrangian coordinates

becomes

Ix
I P g ) —1 =0 u
3a [(Sik + S5 aak] ety T ey (43a)
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Use may be made of the definition of uijk as a gradient of the scalar
10

potential energy of an elastic solid™ teo obtain an equivalent "Kirchhoff"

doublet stress in the following form
p \ da! aa!aaﬂ
(K) _{_o i i

ijk ~\p ax ox} ox! Pyse

u

While the relation between the "Kirchhoff" and "Lagrangian'" forms of the

doublet stress is

N R B B¢
igm 3a3 Baﬂ ijk

The desired form of the micro material equation of motion is obtained as

ox'! oax/! X
2 |(g B TS i ) D _1l., 2
3a, [(Mizm * Milm) 5a. aa']+ Sik Tay, T P8Ry = 300 () Wy (43b)
i L " m
with the simplifying notation u(K) = M, d(L) = d and Fét) S ij

Equations (43a) and (43b) are the equations of motion for use with

plane wave phenomena.

C. PLANAR. WAVE IN MICROMEDIA
In a macromedia the planar wave is defined by requiring all spacial
derivatives to be zero except for those in the direction of the wave
propagation, i.e. 3%— ( ) +#0, 3%~ ( )=0,1=2,3. The same idea
1 i
) 9
(
aal()#o)aa|\

1 1
=0, 1 =2,3 . When this is done, Egs. (43a) and (43b) take the form

)

ray be extended to the micromedia, in which case

3 = 4. dx oo
VY [(S + 8) 8a]+ pof = pu (44a)
2
z . p d” .,
o [ (ax V], 5 ex _ P
5a [M <8a) _l + 8 *a + poF 3 ¥ (44b)
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If we introduce the notion that 3u/3da is a measure of the wave strength

(or shock strength), then we may giie a meaning to 9x/da in the following

X

way: Let A = 3u/da and recall that u =x - a , so that 32 " 14,
then Eqs. (44a) and (44b) become (for £ =F = 0)

3 _ oA . .

o = 4

53 [(S+8)(1+21)]=pu {45a)

- ood2 SR 9
(L+ )8 = = 2w [M(1 + ¥)7) (45b)
107

Again following Bland,

the stresses are replaced by derivatives of the

*
potential energy function, which we will call W. So that

= AW _ 1.2

S = 5e (;nd €= A+ > A )
oW

M= 9K

In addition, note that

and

L(ﬂ)=§_2ﬂi&_§_2‘i_322

LY
da \3 /) 42 522 2a

then Eq. (lUa) becomes

azw 32

5 A
— + 2 [(1+ 18] = pu

u
A 3a2

(46a)

In order to make a similar elimination of M , oue needs to differentiate

the last term in Eq. (45b).

~

*
For the present we will not alter S.

29
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!
Equation (45b) with M replaced by CL and carrying out the

oK
differentiation gives
2
pd” 2
(1428 =—=S—¥- (1+!)23L2"g—:+%(1+v)g—:
K oK
But
<=2
oa
so that
ac _ 2%y
da aa2
Then
o d2 2 2 2 2
1+ns=2—§-2J321. (2+W)W—3§—3g+2wg—:-%
Ik~ da da” 9k
(46b)

It is clear that if Eq. (46b) is introduced into Eq. (46a) a very
complicated partial differential equation results. 1In order to find any
acceptable simplification of these equations, we wish to know what
physical facts can be used to simplify the mathematics of the problem at

this point?

Up to the end of the elastic regime, the wave equation (obtained
by s =0 in Eq. (46a)) gives a very good approximation to the experimental
cbser itions. This seems to be true even when a large number of

dislocations are present (i.e., when a microstructure is present).
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We will appeal to these observations as an argument for setting
s = 0 and see if its consequence gives any meaningful results. To do

this we must study the simultaneous equations:

2. .2
p U - 3—% 3 ; =0 (47a)
9T oe
d2 2.2 2, .2
o
0 w 3IWIAY oW 3y , 0 YW oY W
3 YT 7 7 2acsa s BN o Tt
9k~ 9 da” ok
(47b)
and the constitutive equation
2 2 *
W=A+ B + CA” + DAT + Fx + Gk~ + HkT (47¢c)

with proper boundary and initial conditions. For now we take D =H = A = 0.
Then the behavior of Eq. (47a) is well known and Eq. (47b) becomes the
equation of interest. Substituting W into Eq. (47b) leads to:

2
p d 2
0 . 3 Y Yy _ Y
3 ¥y - 2 5 = 2(F) Yo 2G (5;)
Jda
BZW 3y oY
+2(2+W)W;';§-G+2\P3—8"(F+2G'§'5> (48a)

The right hand of Eq. (48a) is highly nonlinear. In order to see if
anything can be done simply, we will arbitrarily set all nonlinear terms

to zero (the validity of this step must be evaluated). So doing gives
Eq. (48b)

o ¥ oY _
3 ¢ - 26 =5 - 2F 3= 0 (48b)

*
Equation (32).
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In order to make the study of Eq. (48b) easier, nondimensional variables

are introduced in the form:

2
1G

¥eaF ¢
a=S;

=¥
Lo 4¢P

T F 6

with the result

6 =6~ =0 (49)

(44 1T T

Equation (49) has the form of the telegraph equation with space and

time variables having their roles transposed. A substitution of the form

6 = ¢e_c/2 transforms Eq. (49) into
1
o =t YT ¢ (50)

and a formal solution with initial conditions of ¢C(c,0) = P(g), ¢(z,0)

C
6{(¢,1) e78/2 f J, (% chr)z)Q(p,O) do (51a)

0

= 0 yields

where

Qp,1) % [(P(p + 1) +P(p - 1] (51b)

But P(p + 1) corresponds to T < O and does not exist. And since the

initial velocity P(t) is applied only at the surface ¢ =0 , it can be

represented as a delta function P(g) = 6(¢) so that Egqs. (51) give

z —_
$(g,1) = e-l;/2 -2]i f Jo (%- 8',2 - pz><5(p - 1) dp (52)
\
0
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The solution for t >¢ >0 is

e—t;/2 Jo (% 12 - C2> (53)

and for 1 < ¢ the signal has not yet arrived at ¢ , so ¢ =0 . Return~

o=

6(g,1) =

ing Eq. (53) to dimensional notation yields

3u' 16> -F/2Ga . 14/ 6F% 2 F 2

— =5 e J |5 —t -5 a (54)

da 2 F ol2 2 2

Ge d G
o
for an initial microstrain velocity
3

2 3du' _ 367 1 .

ot aa' 20 Fd (55)
corresponding to ¢ =1

This result corresponds to an oscillating decay of microstrain as

a function of position along the space axis.

If F=0 4in the constitutive equation (Eq. (47c)), then Eq. (48b)

becomes

pod2 . 2
35— ¥ - 26

Q>
G

Q>
w
Y 22

This is a standard wave equation and the microstrain may take any form
that is a solution to a wave equation. Now if either of these cases
obtains, then a space oscillation of microstrain is a possible elastic
solution. Since there has been experimental evidence of a space
oscillation in strain hardness after shock loading,133 it is tempting to

speculate on whether or not these oscillating solutions can be related

33




to the strain hardness observations. If the loading takes place so rapidly
that the deformation extends its elastic range on loading, there may be
some correlation between these results and those for which oscillation of

the strain hardening has been observed.
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THERMODYNAMICALLY VALID THERMOELASTIC CONSTITUTIVE RELATIONS CONSIDERING
TEMPERATURE DEPENDENCY OF THE ELASTIC COEFFICIENTS AND STRESS DEPENDENCY
OF THE THERMAL-EXPANSION COEFFICIENT

There are two ways t» formulate the thermodynamics of solids.

(e il S 4 Nt

Traditionally, it has been assumed that deformation gradients fstrains)
i and temperature are the thermodynamic fluxes (i.e., the independent
variables, also called state variables), while stress was considered as

the thermodynamic force (i.e., the dependent variable, also called thke state

19,135 stress and temperature were

considered as the independent variables and strain as the dependent

1 function). However, in some instances

R AR

variable. In his recent paper on thermodynamics of strained solids,

Kestin 7 stated explicitly that either strain or stress could be used as

i g

5 the independent variable. The latter formulation is believed to be mcre

desirable for the following reasons:

1. Prestress (i.e., initial stress) is included in a much more
natural fashion, as discussed by Burridge and Knopoff.20

Prestress must be considered in problems involving unloading
waves.

2, The definitions of the elastic and thermal-expansion coeffi-
cients permit a much simpler derivation of the interrelationship
between temperature dependency of the elastic coefficients and

stress dependency of the thermal-expansion coefficient.

3. As shown by Westergaard, it is easier to deal with nonlinear
- stress-strain relstions by complementary energy as a function
3

of stress rather than strain energy as a function of strain.

4, The yield criterion (or plastic potential) in plasticity theory
bt

3 is a functior of stress not strain.

T
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In view of these considerations, especcially the second one, the

formulation having stress and temperature as the indepencent variables
will be used here.

The energy equation is as follows:

Cijoij + Tn = U (Al)

where eij is the strain tensor, oij is the stress tensor, T 1is
absolute temperature, n 1is the entropy per unit-reference-state volume,
*
U 1is the internal energy per unit-reference-state volume, and a dot
denotes a derivative with respect to time.
The free-energy function is now defined as follows:

¢(0ij, T) = U(°1j’ T) - Tn(cij, T) (A2)

Putting Eq. (A2) into Eq. (Al) gives

(Eij - 3¢/aoij)cij - (n+ 34/3T)T =0 (A3)
f)
Since thermodynamicallyf”l"l"125 $, n , and €,; are independent
of o,, and T,
1j
eij = 36/30ij , n = -3¢/0T (A4) (A5)

Onsager's reciprocal relation implies sufficient continuity of ¢
that the order of partial differentiation can be interchanged. Thus, the
following equality must be satisfied:

*Since the Lagrangian formulation is used, this unit-reference-state
volume basis is equivalent to using a unit-mass basis, but it has the
advantage of eliminating the symbol for referesce-state demsity in
numerous subsequent equations.
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3 | a_ ( () ) I _ 3 I 2 ( 3¢ >|
Boij oT Soij T oT aoij aoij o

1j

or

J€, ., Je, .
2 |__a_il -8 __i.1| (46)
aoij T T aT aoij

oij

To obtain constitutive equations which are linear in s._ress, the

free-energy function is assumed to have the following form:
. wy 12 o
¢ = Bl(L)Jl + BZ(T)JZ + Cl(Jl,T)(Jl)(r 10) + F(T) an

where To is the temperature at the relaxation state (i.e., the tempera-
ture at which the material is free of strain), Bl and BZ are

temperature-dependent elastic coefficients, Cl is the usual thermal-

expansion coefficient, F 1is an arbitrary function of temperature only
(detailed form selected to represent the nonlinear dependence of specific

heat at constant volume on temperature) and Jl and J2 are stress

invariants defined as follows:

& & 13

J

where 1, j, 2, m=1, 2, 3 and G;j is the generalized Kronecker delta
given by:

+1 if i,j form an even permutation of £,m
GZi =¢ -1 1if i,j form an odd permutation of 2£,m

0 if i,j do not form a permutation of &,m

The form of the Cl term in Eq. (A7) implies the existence of a
relaxation state, a point which has been questioned by Eckart,25 who
offered no specific alternative to use in constructing constitutive

relations.
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In view of Eq. (A4)

gij = (3¢/8J1)(3J1/301j) + (3¢/8J2)(3J2/801j) (49)

Differentiation of Eq. (A8) yields

aJI/aoij = Gij, ‘”2/3"13' = sile - oij (A10)

where Gij is the simple Kronecker delta (takes values of unity for

i=3j, zero for i # j).

Inserting Eqs. (A7) and (Al0) into Eq. (A9), one obtained

eij = ZBl(T)JIGij + BZ(T)(Gile - oij)
+ Gij(T - To)a(ClJl)/aJl (all)
or
€11 = 2Bl(T)c11 + [2B1(T) + BZ(T)](o22 + 033)
+ (T - To)a(ClJl)/aoll (A12)
(Similar relations for €99 and 533).
and

€19 = —BZ(T)O12 (A13)

(similar relations for 223 and 531).

Comparing Eqs. (412) and (Al3) with those of classical elasticity
theory, we find
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ZBl -+ E_l , where E 4is Young's modulus
2B1 + B, > -v/E , where v is Poisson's ratio

a(ClJl)/aJ1 + a , lineal coefficient of thermal expansion

To check whether the Onsager requirement, represented by Eq. (A6)

is satisifed, the mixed partial derivatives are taken as follows:

3 Bei. d Bl d B2 a2
T (_lar> =273 by AT Gyt D Sy gy LT - TR0 AT
de
I et )
T (30 ) (414)
13

Equation (Al4) shows that Eq. (A6) is satisfied without placing any
restrictions whatsoever on the form of the constitutive functions
Bl(T), BZ(T)’ Cl(Jl,T) , and F(T).,

The specific entropy is computed from Eqs. (AS5) and (A7) with the
following result:

.12 ' - - -
n = —Jl d Bl/d T - J2 d Bz/d T Jla[(T To)Cl]/aT d F/d T (A15)

Since there can be no entropy production during continuous deformation
of a perfectly elastic material, the specific entropy must be independent
of the stresses. Thus, from Eq. (Al5):
d B2/d T=20 (Al6)
Jl d Bz/d T+ 3{(T - To)ClllaT =0 (Ar7)
It can be shown that B2 is the reciprocal of the shear modulus

G = E/2(1 + v) ; thus, Eq. (Al16) implies that the shear modulus should be

independent of temperature. However, it is an experimentally observed
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fact that the shear modulus is temperature dependent. This can be accom-

modated quite easily by adding a term of the following form to the free-
energy function ¢ in Eq. (A7).

In the stress-strain equation, Eq. (All), this adds a term of the form
(GijJ - oij)(T - TO)B(CZJZ)/BJ2

which is analogous to the deviatoric-thermal-expansion effect considered
theoretically and experimentally by Dillon.17 Addition of this term does

not prevent satisfaction of Eq. (46).

To obtain some useful information from Eq. (Al7), use is made of the

following relation observ d in experiments by Rosenfield and Averbach:16
= v
Cl(okk’ T) ClO(T) + C l_T)okk

Rosenfield and Averbach used only uniaxal loading and measured Cil only
in the direction of that loadirg. However, it seems intuitively apparent
that a stress in direction 1 could affect the thermal expamsion in direc-
tien 1 only, i.e., since the loading is directional, its effect on Cl
should also be directional. This probably could be proved by functional
analysis. However, the present theory is an isotropic one; thus, the

preceding equation must be rewritten as its isotropic equivalent:

c,J

109108 = Cp(e) + Cpy (1) (A18)

Then Equation (Al7) leads to

J1 dBl/dT Td[ (T - To)ClO]/dT

+Jl d[ (T ~ To)Cll]/dT =0 (A19)
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Again invoking independence of stress, Eq. (Al9) implies:
4a[(T - To)Clol/dT =0 (A20)
and
dBl/dT + d[(T - To)Cll]/dT =0 (A21)
Integration of Eq. (A20) yields:
(T - To)clo(T) = Const. (A22)

Equation (A22) does not appear to be realistic; this suggests that further

work on this topic is required.

Equation (A21l) expresses an interrelationship between Bl and C11 .
Since the experiments of Rosenfield and Averbach were conducted at room
temperature only, the validity of Eq. (A21l) cannot be checked with
experimental data at present. Table 1 lists some sets of specific forms
for Cll and Bl which satisfy Eq. (A21).

Since B, = (2}3)—l , Eq. {2) in the body of the report can be put

in the following form:
C11 = 2 dBlldT {A23)

Thus, Eq. (A23) corresponds to a g value of 2, where g 1is

defined as follows:
A
g = Cll/(dBl/dt) (A24)

It is noted that the form of Eq. (A23) is identical to Cases 2-4 in

Table 1, even though the coefficient g differs considerably. It is
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TABLE 1

SOME SETS OF SPECIFIC FORMS OF COEFFICIENTS B, AND C,, WHICH SATISFY
EQUATION (A21)

% * A
Set No. By Sy g(T) = Cy,/(dB,/dT)
1 Kl KZ/(T ~ To) o
2 R, = KyT K, -1
3 — K e K/T -1 + (T - 'ro)k/T?‘]"1
4 - KT 1+ (1 - T)p/m 7t
(o]
*
K,, k, p ars constants

1

noted that for temperatures near to the strain-free temperature (to) R
Cases 2-4 predict g = -1 . However, Rosenfield and Averbach's experiments
for five metals gave a value of g within 3% of 2 (although individual
variations for specific metals dirfered from 2 by 6% to 100%).

Apparently Rosenfield and Averbach made a mathematical error in
applying Eq. (46), and in doing so, they obtained the interrelationship
Eq. (2). This is contrary to current thinking in thermodynamics that
Onsager's relation should not place numerical restrictions on the
constitutive equation coefficients, but rather should be used only in
determining the general form of the constiiutive equationms. Nevertheless,
it is puzzling that Eq. (A23) agrees with experimental results better than

with the values «f Cases 2-4 in Table 1.
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